Reproducing Kernel Hilbert Space and Coalescence Hidden-variable Fractal Interpolation Functions
نویسندگان
چکیده
منابع مشابه
Spline Coalescence Hidden Variable Fractal Interpolation Functions
This paper generalizes the classical spline using a new construction of spline coalescence hidden variable fractal interpolation function (CHFIF). The derivative of a spline CHFIF is a typical fractal function that is self-affine or non-self-affine depending on the parameters of a nondiagonal iterated function system. Our construction generalizes the construction of Barnsley and Harrington (198...
متن کاملSmoothness Analysis of Coalescence Hidden Variable Fractal Interpolation Functions
A. K. B. Chand 1 ,G. P. Kapoor 1 Department of Mathematics, Indian Institute of Technology Kanpur, Currently at Departamento de Matemática AplicadaCentro Politécnico Superior de Ingenieros, Universidad de Zaragoza. C/ Mariá de Luna, 3, 50018, Zaragoza, España . 2 Department of Mathematics, Indian Institute of Technology Kanpur, Kanpur-208016, India. (Received 30 September 2006, accepted 27 Nove...
متن کاملFractal Dimension of Coalescence Hidden-variable Fractal Interpolation Surface
In the present paper, the bounds on fractal dimension of Coalescence Hidden-variable Fractal Interpolation Surface (CHFIS) in R on a equispaced mesh are found. These bounds determine the conditions on the free parameters for fractal dimension of the constructed CHFIS to become close to 3. The results derived here are tested on a tsunami wave surface by computing the lower and upper bounds of th...
متن کاملStability of Coalescence Hidden variable Fractal Interpolation Surfaces
In the present paper, the stability of Coalescence Hidden variable Fractal Interpolation Surfaces(CHFIS) is established. The estimates on error in approximation of the data generating function by CHFIS are found when there is a perturbation in independent, dependent and hidden variables. It is proved that any small perturbation in any of the variables of generalized interpolation data results i...
متن کاملModel-free Variable Selection in Reproducing Kernel Hilbert Space
Variable selection is popular in high-dimensional data analysis to identify the truly informative variables. Many variable selection methods have been developed under various model assumptions. Whereas success has been widely reported in literature, their performances largely depend on validity of the assumed models, such as the linear or additive models. This article introduces a model-free va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 2019
ISSN: 2391-4661
DOI: 10.1515/dema-2019-0027